C	Question		Answer	Μ	Guidance
1					
	а		for R_1	B1	
			for R ₂	B1	
	b	i	500 Ω	B1	accept $\pm 20 \Omega$
		ii	7.0 = I x 500; I 0.014 (A)	B1	ecf b(i)
		iii	5.0 = 0.014 x R or $12 = 0.014(500 + R)$	M1	ecf b(i)(ii)
			R = 360 Ω	A1	allow R = 500 x 5/7 = 360 Ω
		iv	(at 200°C) R _{th} = 250 Ω	B1	allow R_{th} = 250 ± 10 giving 4.8 to 5.1 V
			V across thermistor =12 x 250/(250 + 350) = 5.0 V	B1	expect 350 or 360; allow 1 SF where answer is 5.0
			alt 5.0 = 12 x R/(R + 350)		NOT 250 x 0.02 = 5.0 V; 0.02 A must be justified
			or I = 7.0/350 = 0.02 A; V _{th} = 5.0 = 0.02 x R		allow 7.0 = 12 x 350/(350 + R)
			R = 250 Ω which occurs at 200°C		
	С		switch on 5.0 = 12 x 250/(250 + R) or 7.0 = 12 x R/(250 + R)	M1	accept solution in 2 stages first calculating currents
			giving R = 350Ω which is 190° C	A1	on I = 0.02 and R = 7/0.02
			switch off 7.0 = 12 x 250/(250 + R) or 5.0 = 12 x R/(250 + R)	M1	off I = 0.028 and R = 5/0.028
			giving R = 180 Ω which is 210°C	A1	allow ± 5°C in reading from graph
			or Switch on, R2 / R1 = 7/5 giving R2 - 250 x 7/5 = 350 ohm		N.B. zero marks for correct temperatures quoted
			Switch off, R2 / R1 = 5/7 giving R2 = 250 x 5/7 = 179 ohm		without some correct working/justification
			Total question 2	12	

Question		on	Answer	Μ	Guidance
2					
	а	i	Q = It= 0.45 x 4.67 x 60 x 60	C1	
			= 7600	A1	accept 7560 or 7570
			C or As	B1	
		ii	1 positive; 2 clockwise	M1	positive plus correct direction of arrow for first mark;
		1,2			do not penalise if arrow not labelled I.
			energy must be transferred to the cell	A1	allow (conventional) current is from positive to
			or current in opposite direction transfers energy from the cell to		negative ; or electron flow from – to + [but current
			the circuit/AW		must be clockwise in 1]
		3	$V_{XY} = 1.5 + 0.45 \times 0.90$	C1	
			$V_{XY} = 1.9 (V)$	A1	accept 1.905 or 1.91
		4	P = VI = 0.45 x 1.5	C1	allow QV/t with ecf a(i) if necessary (11340/16800)
			$P = 0.675 (J s^{-1})$	A1	allow 0.7 as final line if 0.675 appears above
	b		1.cell across variable resistor R ammeter in series and voltmeter		QWC last marking point needed for full marks
			in parallel across R or cell	B1	
			2.Take (set of) readings of V and I for different positions/values		allow use (digital) voltmeter across <u>unloaded</u> cell to
			of the variable resistor	B1	find E; add R and find one value of V and I; then use
			3.plot a graph of V against I	B1	equation to find r (points 2 to 5)
			4.(find) y-intercept = E	B1	ignore sign of gradient in determining r
			5.(find) the gradient of the V against I graph which equals the		allow for no graph plot, using 2 pairs of values of V
			internal resistance in magnitude	B1	and I substituted into equation allows r and E to be
			or 4 or 5 take one pair of values of V,I and substitute		found.(points 2 to 5)
			into equation E = V + Ir to find r or E		
	С	i	4 x 1.5 V cells gives 6.0 V with r of 3.6 Ω	B1	allow AW such as: 6 V but total R now 21.6 Ω ;
			so current is 6.0/(3.6 + 18) = 0.28 A	B1	6 V across 21.6 Ω gives 5 V across 18 Ω;
			requires (2 W/6 V =) 0.33 A to light normally	B1	requires 6 V to light normally
			or power delivered = (0.28 ² x 18 or 5.0 x 0.28)= 1.4 W		allow P = 1.(6)7 W for 2 marks; only give the third
			alt: use 0.33 A & 6 V to show need emf of 7.2 V (1.8 V per cell)		mark if P labelled as power delivered by cell
		ii	1.5 n = 0.33 (18 + 0.9 n) or 1.5n = 6 + 0.3n	M1	alt: lamp needs V = 6V and I = 0.33 A
			so 3.6 n = 18 or 1.2n = 6 giving n = 5	A1	terminal p.d per cell is $1.5 = V + 0.9 \times 0.33$
					giving V = 1.2 V so n = 6/1.2 = 5
					allow trial and error method but working must be
					shown to score any marks
			Total question 3	19	

Question		on	Answer	Marks	Guidance
3	а		emf – J C ⁻¹ , resistance – V A ⁻¹ , energy – V C, charge – A s	B1 B1	4 correct 2 marks; 2 correct 1 mark
	b	i	energy per unit charge transferred from electrical to other forms	B1 B1	NOT coulomb allow any other form e.g. heat, light, etc
		ii	(some) energy is transferred into thermal energy /lost as heat in (driving charge through) the battery. It behaves as if it has an (internal) resistance/AW or there is a voltage drop across/decrease in voltage from the battery (when a current is drawn from it)/AW	B1	allow any description which uses E = V + Ir but not just the formula alone, e.g. 'lost volts' per unit current is just accepable
		iii	p.d. across each branch is the same/branches in parallel resistance in X branch is 6 Ω , in YZ branch is 12 Ω so current in X branch is twice that in YZ branch/ as V = IR	B1 B1 A0	allow R in X branch is half that in YZ branch/AW
		iv	$V = IR = 0.08 \times 6$ V = 0.48 (V)	C1 A1	
		v	the p.d. across each 3 Ω resistor is terminal p.d./2 or 0.48 V at Z there is 6 Ω either way to the supply/AW so p.d. across each 6 Ω is terminal p.d./2 so p.d. between X and Z is zero	B1 B1 A0	p.d./voltage across 3 Ω and 6 Ω are equal with justification
		vi	terminal p.d. = 0.96 V current in r = $0.16 + 0.08 = 0.24 \text{ A}$ use of E = V + Ir $1.2 = 0.96 + 0.24 \text{ r}$ giving r = $1.0 (\Omega)$	C1 C1 C1 A1	or V = 0.24×4 or = 0.08×12 or 0.16×6 or (iv) $\times 2$ alt: R in parallel gives 4.0Ω ; total R = $1.2/0.24 = 5.0 \Omega$ r = $5.0 - 4.0 = 1.0 (\Omega)$ allow 1SF
			Total	15	